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In order to determine the critical values of the coupling constant of a given potential, i.e., 
the values at which there exists a zero energy bound state, the perturbative expansion of the 
Jost function at zero energy is analyzed. This expansion is carried out with the help of the 
defining integral equation, giving rise to a very accurate and stable procedure. Some 
numerical examples are presented, with a particular emphasis on Yukawa potential. 0 1985 

Academic Press, Inc. 

1. INTRODUCTION 

The determination of the critical values of the coupling constant, i.e., those values 
at which there exist only a few bound states, one of them at zero energy, has been 
traditionally considered as a cumbersome problem in numerical analysis. The usual 
and straightforward method consists in solving the Schrodinger equation for dif- 
ferent values of the coupling constant so as to find a bound state with energy close 
to zero, and then determining the critical coupling constant after some inter- 
polation mechanism. This is a costly approach. First, given that one is involved 
with very low energies, the numerical integration must be extended to very large 
values of the distance. Second, it is necessary to carry out two iterative procedures, 
one to determine the eigenvalue closest to zero, and the other to determine the 
coupling constant. 

With this procedure the critical values of the coupling constant of the Yukawa 
potential (sometimes referred to as the screened Coulomb potential) have been 
determined with a high degree of precision [ 1, 21. The calculations of Ref. [Z] 
following this method are, in our opinion, the most precise determination of the 
critical values corresponding to the Yukawa potential. 

There is a simple modification of this procedure which simplifies the com- 
putation: it consists in a change of variables in the Schrodinger equation which 
adds a classical turning point to the right [3], so that the zero-energy bound state 
is converted into a normal bound state with a prescribed, non-zero energy. This 
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avoids the need of a great deal of numerical integration. However, the critical 
values must be determined again by means of an interpolation mechanism. 

A different approach is based on the study of the low-energy scattering 
parameters, and particularly the behaviour of the scattering length (or its inverse) 
in terms of the coupling constant [4, 51. The behaviour of the scattering length 
with the coupling constant is simple to describe [6]. For a null coupling constant, 
i.e., in the absence of interaction, the scattering length is zero, and when the coupl- 
ing constant increases there appears a critical value at which the scattering length 
has a pole. This is the critical value for having only one bound state at zero energy. 
Afterwards there follows a sequence of zeros and poles, showing a shape analogous 
to that of the function tan(x), each pole corresponding to a new bound state at zero 
energy. 

From the numerical point of view, this procedure has been implemented in two 
ways. Schey and Schwarz [4] determined the values of the inverse scattering length 
at several values of the coupling constant, and after a polynomial interpolation, the 
corresponding zeros. On the other hand, Patil [5] determined the expansion of the 
scattering length in powers of the coupling constant. From this expansion the poles 
were determined by constructing the appropriate Padt approximants. 

The advantage of the study based on properties of the scattering length over the 
usual shooting method described at the beginning is that in the former case one is 
not faced with an eigenvalue problem. Actually, the zero energy Schriidinger 
equation is solved starting at the origin with the value u(0) = 0 with an arbitrary 
slope, and looking to the asymptotic behaviour at large distances. This method is 
both simple and accurate. 

We should finally mention other specialized methods for the Yukawa potential 
which have also provided values for the critical values of the coupling constant. 
Hulten and Laurikainen [7] used a variational method. Iafrate and Mendelsohn 
[S] and Galindo and Pascual [9] used a perturbation expansion in terms of the 
inverse coupling constant. This expansion is extended to low values of the coupling 
constant by means of Pade approximants [9] and then solved for the coupling con- 
stant at zero energy. Nauemberg [lo] converts the Schriidinger equation into a 
pair of coupled integral equations, obtaining an implicit equation relating the 
bound state energy with the coupling constant. 

The method followed in this paper borrows some basic ideas from the work of 
Schey and Schwarz [4] and Patil [5]. The main idea is to determine the expansion 
of the Jost function at zero energy in terms of the coupling constant of the poten- 
tial. This expansion is known to convergent for all values of the coupling constant 
under very general and not too restrictive conditions on the potential. The coef- 
ficients of the expansion are determined by iteratively computing one-dimensional 
integrals. Finally, the critical values of the coupling constant correspond to the 
zeros of the Jost function. The general theory is briefly described in Section 2, and 
the numerical method is described in Section 3. Section 4 includes some results 
corresponding to Yukawa and exponential potentials. Finally, Section 5 contains 
the conclusions and main results of this work. 
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2. THEORETICAL DEVELOPMENT 

In this section we will use some results from the theory of potential scattering. 
We will follow the notation of Taylor [ 111. 

As is well known, the bound states of angular momentum I correspond to the 
zeros of the Jost function f,(p) = 0 in the upper half plane. The Jost function may 
be determined from the regular solution by means of the integral 

(1) 

where the regular solution satisfies the integral equation 

d&J =jdPr) + 1 ji dr’ g,,(r, r’) Vr’) 41p(r’) 

and 

is the free hamiltonian Green function determined in such a way that #,P behaves at 
small r as j,(pr). The roof symbol on j,, n, and h, indicates that these spherical 
Bessel functions have been multiplied by pr, i.e., j,(z) = zj,(z). 

For our purposes we need the above equations in the p --f 0 limit. According to 
the behaviour at the origin of the Bessel functions it is convenient to redefine the 
regular solution by removing the dominant dependence at r + 0; i.e., we will 
introduce the function 

and the corresponding equations are now 

vl(r)=l+(2+1) o L{dr’r’{l-($““)U(r’)q,(r’) 

and 

h(O) = I+& jR r dr cpir) u(r). 
0 

(4) 

(5) 

Note that in the equation determiningf,(O) we have introduced an upper limit R 
to the integral instead of co. This step is certainly necessary in any numerical 
approach and it takes into account that the potential goes sufficiently fast to zero at 
long distances. Moreover, it permits the substitution of k[( pr) by its limit at pr + 0. 
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Equations (4) and (5) are the basis of a simple expansion in terms of the coupl- 
ing constant of the potential. If we write 

cpdr)= c Jk dk’W (6) 
k=O 

f/(O) = c lkfjk’ 
k=O 

(7) 

then the recurrence relations 

cpjk’(r) = &-J~dr’r~{l-(;)2’+1} U(r’)(Pjk-‘)(r’) 

1 R f(k) = - 
s 21+1 0 

dr rcpjk-‘)(r) U(r) (9) 

emerge, with the starting values 
cpjO’(r) = 1 

fj”‘= 1. 

Once the coefficients fi”) are determined, the threshold values of the coupling 
constant 1 for having zero-energy bound states are the zeros of the polynomial C,” 
l"fj"). The value of the upper limit N must be carefully chosen, particularly for 
large values of 1. 

It is interesting to determine the behaviour of the regular solution cpI at short dis- 
tances and we have to distinguish the cases of potentials regular at the origin and 
potentials having a singularity. In all cases q:(r) = 1. 

For non-singular poentials we may use the recurrence relation (8) to obtain 

where 

(k) ‘PI - I c(k),.2k 
r-0 (10) 

Cjl’= l 
2(21+ 3) U(O) 

and 

cjk’= cl”- 1) 
2k(21:2k + 1) U(o). (12) 

Equation (10) will be used later to increase the accuracy of the quadratures 
needed to evaluate the integrals (8) and (9). 

The case of singular potentials of the type l/r near the origin can also be worked 
out. If we define V= lim,,, rU(r), the recurrence relation (8) gives the result 

CPI (k) __+ 
r-0 

Bjk)rk (13) 
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with 

@l’=L 
21+2 

and 

@)=$-I) 
1 

I I k(2l+k+ 1)’ 

(14) 

(15) 

3. NUMERICAL METHOD 

The objective is to integrate the chain of Eqs. (8) and (9) up to some value of 
k = N. 

Let us consider first Eq. (8) for non-singular potentials (i.e., U(0) is a constant). 
The corresponding integral is converted into a sum by means of the trapezoidal 
rule, and using the notation 

U(n) = U(nh) 

cpjk’(n) = cpjk’(nh) 

r=nh 

(16) 

there results 

cpjk’(n) = &;~:P{l-($*‘“) U(P)cpYVP). (17) 

For practical calculations it is convenient to define the sums 

n-l 
Se-l= c Pw4cpjk-“(P) 

p=l 

n-1 

T n-1 = c p*‘+*u(p) cpjk-‘j(p) 

p=l 

which satisfy the trivial recurrence relations 

S,=S,_,+nU(n)cpjk-l)(n) 

T,, = T, _ 1 + n*‘+ ‘U(n) qjk- “(n) 
(18) 

and construct cplk)(n) from those quantities. In this form, all integrals required in 
(8) (one for each value of r) are evaluated recurrently with little effort. In the same 
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iteration loop we may include also the evaluation of Jost function after transform- 
ing Eq. (9) into a sum 

h2 (R/h) 
f(k),- c a+ 1 p=, 

P& “(PI VP). (19) 

This is a very quick method producing results in order h*, the error of the 
trapezoidal rule. 

When the potential is singular at the origin in such a form that lim,,, rU(r) = V, 
it is necessary to include into the above sums the contribution at p = 0 (the point of 
the origin). Taking into account the characteristic behaviour of the regular solution 
cpjk)(r) at the origin, Eq. (13), this correction only applies in the case where we are 
computing cpj”(r) and fj’). 

To improve the precision of the numerical method we have used the 
Euler-Maclaurin expansion [ 121 at the lowest order. This expansion relates the 
trapezoidal rule with the exact value of an integral in the form 

s 
nh F(r’) dr’= h{tF(O) +F(h) +F(2h) + ... + +F(nh)} 

0 

-; {F’(nh) - F’(O)} + O(h4). (20) 

In the case of the computation of cpjk)(r) the argument of the integral is given by 

F(r’) = r’ { 1 -(Gr+‘l U(f) cpf-‘jr’) 

and the derivatives involved in Eq. (20) may be easily computed with the results 

(a) Non-singular potentials 

F(0) = 0 

F(nh) = 0 

F(O) = V) bk,f 

F’(nh) = -(21-k 1) U(nh) & “(nh). 

(b) Singular potentials (l/r behaviour) 

F(O) = VJ,, 

F(nh) = 0 

F’(nh) = - (2Z+ 1) U(nh) cpjk- ‘)(nh) 

where V=lim,,, rU(r) and V’ = (d/dr)(rU(r)) at r = 0. 

(21) 

(22) 

58 I/60/?-4 
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To obtain the results given in Eqs. (21) and (22) we simply derive the function 
F(r’) and consider the behaviour of the functions cp, + -l) stated in the previous sec- 
tion near the origin. 

An analogous correction must be considered in the calculation of the Jost 
function. In this case the function to be integrated is F(r) = rU(r) cpjkP”(r). At the 
upper limit R, both F(R) and F’(R) can be considered null (actually, we must go 
far enough so as to have these properties). The corrections related with the origin 
are given by 

(a) Non-singular potentials 

F(0) = 0 

F(0) = U(0) 6,,, . 
(23) 

(b) Singular potentials (l/r behaviour) 

F(O) = vh,., 
l/2 (24) 

with the same values of V and I/’ as above. 

4. SOME NUMERICAL CALCULATIONS 

The first case we have considered is the exponential potential 
I’(r) = --A exp( -r). The s-wave bound states of this potential are determined by 
solving the transcendental equation (!i2/2m = 1) 

J2&2&) = 0 (25) 

so that the critical values of the coupling constant are related in a very simple way 
to the zeros of the Bessel function Jo. 

TABLE I 

Critical Values for the Coupling Constant of the Exponential Potential for s-Wave States 

nl 

Trapezoidal Euler-Maclaurin Corr. 
250 points 1000 points 250 points 1000 points Exact 

IS 1.4454 1.44511 1.445793 1.44579649 1.44579649 
2s 7.60 7.616 7.6172 7.6178149 7.61781559 
3s 18.6 18.71 18.71 18.72174 18.72175169 
4s 34.4 34.74 34.70 34.76000 34.76007105 
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TABLE II 

Expansion Coefficients of the Zero Energy Jost Function in Terms of 
the Coupling Constant for the Exponential Potential 

f (k) Exact Numerical Percentage error 

; (1) (21 0.25 I 0.249999941 1.000000001 2x10-5 10-7 

f (3) x 102 2.71711111 2.771111825 2 x 10-a 
f (4) x lo3 1.73611111 1.736096510 8x10-4 
f ‘5’ x 105 6.94444444 6.944286301 2x10-3 
f ‘6’ x 106 1.92901234 1.928916237 5x10-3 

f ‘7) x 10s 3.93675989 3.936386594 9x 10-3 
;i9, (8) x x 1012 10’0 6.15118732 7.59405843 6.150181362 7.592068168 3x10-2 2x lo-* 

f IlO) x 10’4 7.59405843 7.591045501 4x 10-2 

In Table I we present our numerical calculations corresponding to 250 and 1000 
mesh points, with R=25 and with and without the first order Euler-Maclaurin 
correction. In all cases presented we have computed up to N = 20, i.e., the first 20 
terms of the perturbative expansion of the Jost function. 

Comparison between the exact results and the numerical calculations shows that 
our method deteriorates when the critical value increases. There are two ways this 
may happen. First, at large values of the coupling constant it is necessary to 
increase the degree N of the perturbative expansion. A second way is the 
propagation and accumulation of numerical errors along the successive iterations. 
Both alternatives are easily checked in the case of the exponential potential, because 
the s-wave Jost function at zero energy is given by 

(26) 

and in our case, i.e., up to the fourth bound state, it is sufficient to consider for the 
above sum (26) an upper limit of 20. Consequently, this means that the increase in 
error with the critical value of the coupling constant must be due to propagation 
errors. In Table II we compare the exact values of the perturbative expansion of the 
Jost function, Eq. (26), with the numerical ones, showing clearly the effect of error 
propagation. Nevertheless, the relative errors are still very small. These results 
correspond to a mesh of 1000 points only. 

The second case we have studied corresponds to Yukawa potential U(r) = -1 
exp( -T)/T. In that case we have taken into account the appropriate corrections to 
deal properly with the singularity at the origin, as was described in Section 3. 
Table III collects a series of results regarding this potential obtained by means of a 
wide variety of methods. 



216 BUBNDIA AND GUARDIOLA 

TABLE III 

Critical Coupling Constants Corresponding to Several nl Levels of 
the Yukawa Potential, Computed by Different Techniques 

721 IS 2s 3s 2P 3P 3d 

This work 1.6798077 6.4472586 14.342011 9.0797 1 17.7254 21.8825 
Direct int. [Z] 1.6798077 6.4472603 14.342027 9.081959 17.74457 21.89498 
Direct int. [ 1] 1.679816 
Direct int. [3] 1.6798076 6.44726 14.342028 9.081958 17.74457 21.89495 

Scatt. length [4] 1.68 6.45 14.3 9.08 17.7 21.8 
Scatt. length [S] 1.680 6.42 
Perturbative [9] 1.6798474 6.449072 14.35332 9.191516 18.01449 22.28410 
Variational [7] 1.6798194 6.44772 14.372 
Analytic [lo] 1.67974 

Notes. See the text for further details. The numbers in brackets in the first column are the references 
to the original works. 

The first row contains our estimates for the critical coupling constants 
corresponding to the Is, 2s, 35 2p, 3p, and 3d levels, computed with a mesh of 
1000 points and step 0.025. The second row contains the estimates of Singh and 
Varshni [2], and the third the results of Rogers, Graboske, and Harwood [l], 
both obtained by direct numerical integration by searching for a zero energy bound 
state. The fourth row contains the results of Oset and Salcedo [3], which follow an 
analogous mechanism after transforming the Schriidinger equation so as to move 
the bound state from zero. The number of mesh points used in Ref. [l] is 20,000, 
up to R = 40. The calculations of Oset and Salcedo use an unpredictable number of 
mesh points. 

Rows 5 and 6 include the calculations of Schey and Schwarz [4] and Patil [S], 
respectively. Both methods are based on the determination of the poles of the scat- 
tering length as a function of the coupling constant. Schey and Schwarz [4] com- 
pute the inverse of the scattering length for several values of the coupling constant 
by ditectly integrating the zero energy Schrijdinger equation. Patil [S] carries out a 
perturbative expansion of the scattering length by means of numerical methods. 

Finally, the table also includes other results based on analytical methods: pertur- 
bation in terms of the inverse coupling constant [9] variational calculations [7] 
and a direct iterative method due to Nauemberg [lo]. 

Again our results are very good, and in addition the calculations require a short 
computing time. As in the previous case, our results deteriorate at higher values of 
the coupling constant. 

5. FINAL COMMENTS 

We have developed an iterative perturbation expansion scheme for the deter- 
mination of the Jost function at zero energy. By solving a polynomial equation in 
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the coupling constant the values of the coupling constant are determined at a high 
degree of precision with quite low number of points for the needed quadratures. In 
contrast with other numerical methods, our approach is both a simple and a stable 
algorithm, and is easily extended to deal with a class of singular potentials at the 
origin. 

For the sake of determining the critical values of the coupling constant we have 
found our method much more stable than the analysis of the equivalent expansion 
of the scattering length. The expansion of the scattering length in powers of the 
coupling constant can also be carried out in a way analogous to that used to 
expand the Jost function. The first step is to construct the integral equation 
equivalent to the Schrodinger equation (s-waves) 

cp” = AU(r) cp 

v(O) = 0 

cp’(c0) = 1; 

i.e., we look for a regular solution with the behaviour cp(r) -+, _ o. r - a, which turns 
out to be 

q(r) = r - 2 Jrn dr’ U(r’) cp(r’)(r’O(r - r’) + r&r’- r)) 
0 

so that a = lim, _ m (q(r)-r) is given by 

a= -A 
I 

a dr’ r’V(r’) cp(r’). 
0 

The perturbative expansion of this integral equation may be solved numerically 
in just the same form as described in Section 3, and the corresponding expansion of 
a in powers of A turns out to be again very stable. However, the very rich structure 
of a (A), alternating zeros and poles at real values of I, makes numerically unstable 
the determination of all but the first pole. 

In conclusion we would like to stress the great simplicity of the whole procedure 
that results from the use of integral equations perturbatively expanded instead of 
the corresponding expansion of the differential equation. Similarly, we consider the 
improvement of the quadrature rule by means of the Euler-Maclaurin correction as 
a very effective way of increasing the precision of the numerical calculations. 
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